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ABSTRACT

This paper is the first one in the series of three which are

addressing in detail the properties of the three basic versions of the

finite element method in the one dimensional setting. The main emphasis

is placed on the analysis when the (exact) solution has singularity of

xO-type. The first part analyzes the p-version, the second the h-version

and general h-p version and the final third part addresses the problems of

the adaptive h-p version. OI.L.4 '- !.,- I - ,
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1. INTRODUCTION

In general, the h-version of the Finite Element Method is the

standard version when the degree of elements is fixed and the convergence

is achieved by the refinement of -he mesh. The p-version fixes the mesh

and the convergence is obtained by the increase of the degree of

elements. The h-p version simultaneously refines the mesh and increases

the degree of elements. In recent years, the p and h-p versions of the

finite element method attracted large interest both in theory and

computational practice. The first commercial program PROBE based on the

p-version become available. This paper is the first in the series of

three which will analyze in detail the properties of the h, p and h-p

versions for solving the one dimensional problem, the solution of which

has singularity of x0-type. The first part analyzes the p-version, the

second the h-version and general h-p versions and the final third one

addresses the problem of the adaptive h-p version.

In this paper we will not discuss the two dimensional case; neverthe-

less the detailed results in one dimension are serving as guidelines to

the two dimensional theory. For the analyses of the p and h-p finite

element version for the two dimensional problem we refer to [1]. For the

computational implementation and engineering aspects of the p and h-p

versions we refer to [2].

The p-version was studied theoretically first in [3]. The h-p version

was addressed in [4], and for detailed analysis of the p-version in three

dimension we refer to [5] (6]. For additional theoretical aspect of the

p-version we refer also to [7]. The p-version is in some sense related to

the theory of spectral method. For these results we refer especially to

[8] [9] [10).

-..-.-- , 2 -
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In this paper we will consider the most simple model problem

(1.1) -u" = f

u(O) = u(i) - 0

with the solution

(1.2) Uo(X) (x-) - (1-)a x- (-0)al-x)

where
(x-X)0 -I - )a  if x >

'0if x 4 .

We will be interested in the accuracy of the finite element method

measured in the energy norm ,UIE = 1 (u0)2 dx. We have to assume that

a >1/4 to get finite energy of the solution. The energy norm is in our

case obviously equivalent to the HI-norm of the standard Sobolev space

H1 .

The xa-type singularity of the solution is an analogue of the singu-

larity of the solution of the two dimensional boundary value problems for

elliptic partial differential equation occuring when the domain has

corners. Solution of this type belongs to low order Sobolev spaces.

This, in general, leads to low rate of convergence of the finite element

method with quasiuniform meshes. On the other hand, taking into account

the special structure of u(x), one can achieve high (exponential) rate

of convergence by proper design of the mesh and degrees of elements.

Obviously, the results related to (1.1) can be generalized to the general

case of two point boundary value problem.
p

For our model, the finite element method with C0 elements gives exact

solution in the nodal points and the analysis of the error of the finite

r 
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element method reduces to the analysis of the best L2 -approximation of

u' by piecewise polynomials.

Most of our results in this paper will provide both, the upper and

lower bounds of the error of the finite element solution. In what it

follows the following notation will be used. By A x B we mean that A

asymptotically equals B as some parameter tend to a certain limit. By

A - B we mean that A is equivalent to B, that is, there exists an

equivalency constant C > 0 (depending on some parameters to be

indicated) such that

CB 4 A 4 C B.

The paper is organized as follows: In Sections 2-4 we study the prop-

erties of the Legendre expansion of the function (x-C)'. Section 5

addresses the Lengendre expansion of more general functions. Section 6

discusses the performance of the p-version, and Section 7 deals with

numerical computations.

2. THE LEGENDRE EXPANSION OF (x-).

Let

1 dn 2) n= [(x2-1) ]

nn n .d n2nn! dxn

be the Legendre polynomials which form an orthogonal basis of L2 [-1,1].

For the properties of Legendre polynomials see [11], [12], [131, [14].

We denote

(2.1) u x) - (x-0)+.

Suppose that its Legendre expansion is

(2.2) u (x) a P (x).
(2.2) uniO n n
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The following theorem gives the expression for the coefficients of the

expansion:

Theorem 1. Let, C < 1, then:

1) if -1, a > -1, then

(2.3a) ao = - 2 a
a a-I )

(2.3b) a = (a)(n+l) (2n+l) a
n (a+l)(a+2)...(+n+l)

2) if -1 < < ( 1, a > -1, then

(2.4) a =2n+l (l-0D+I n! (a+l,-a-l)(Mn 2 (a+l)(a+2)...(a+n+l) n

where P(a+l,-a-1) is the Jacobi polynomial
n

(2.5) P('V)( W (-1)n dn [(l-x) n+p(l+x)n+v ]
n 2 n n!(l-x)1(l+x) dxn

with P - a + I, v - - -i.

3) if < -1, then

(2.6) a a-a-l)(a-2) .. (a-n+l) (2r)na4 n (r )
an  (2n-l)!! na

where

1
(2.7) r - (0 < r < 1)

and 4 n,a(x) is the Gauss hypergeometric function

na



(2.8) 0 (x) -F(n-a,-C- I n+ 1 x)
n,a 2' 2'

+~(-t(-zl... (n-cz+k-l) 2 2 k! 2 ki

-1 k1 (n)C++ .. (n+ y + k-i) k

2n~

(2.9) a~ 2 ---- f Iu (x)P (x)dx.

in the case ~-

a 2- 1 (1+t)' P (t)dt
n 2 -1n

2=~ 3.~±ij i [(t 2 1)n](n) dt.
2 -2 2n

Since a > -1, for k -l2.,n we have

ur C+t)ck+l[(t2_l)n](n-k) 0

integration by parts yields

2 
n~

2 n+i ( 1 )2n(a-). i)Cn4) 11 10atd

2 2fli (a+l)(ca+2)'..(ci+n) _I(4-) d
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2n+ r crIa(c-l)..(a-nt+1 2 a+n+1

21*1l (a+l)Ccr+2) ...cx-in+1)

and (2.3) follows.

For the case -1 < F < 1 we have

(2.10) a 2n+l (tdt

For Re v > 0 and 0 < y < 1 one has

(2.11) f 1(1-x)4- P (l-yx)dx 'r(p+n!1 n(,p,1Y
0 nr4+r#7

(see (141, p 833). Setting t -I -(-jywe obtain fromi (2,10):

2n+I 0
2a* T- + 1 (_),Yl (1-(i p (1-(l-F)dy

2nI(1-r )a f (1~ )- -y)--0~
2 n

2 ' ' r(cz+n+2)nM

-2n+1 (1-F)2+'l -- 1
2 Cat+) (a+2)... (WxiW1) Pn

This proves (2.4).

Finally, for < -1 integration by parts gives

- 2n+l f (t+I~I)a I I(t 2 -')n ~ ~d
2 _I 

2 n
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2 2n+I a(a-l)..-(a-n+l) 1 (t+ ) 2-1) n dt2 (-i) 2n.n! -1

Setting t cos e, we obtain

(-I) n f (t+I)a-n(t2_1) n dt = f sin2n+l 0 do.

-1 0 (IW+cos 0) n-a

By [141, p. 384 we have

f sin2p-lx2 dx = B(p, 1/2 )F(v,v-p+ 
1/2 ;4+l/2 ;a2)

0 (1+2a cos x+a2)

with Re 4 > 0, lal < 1, and F(a,o;v;x) being the Gauss hypergeometric

function. Let

r (0 <r <I)

thus

- l+rI2

Setting 4 - n + 1, (p± > 0) and v - n - a, we have

sin 2 n+l - si n 2(n+l)-I 9 de
0 (I&I+cos 0 )n

-a 0 (l+2r cos +r2 )n-m

- (2 r)n-a r(n+l)/A F(n-a,-a - 3 23 2 ~
rfn + n)

(2 r) n-a 2 n!l ( 2
= ( 2-n+l)!!! r

with n,a defined in (2.8). (2.6) now follows easily. U

{ r ..n -"
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Remark 1. For - -1, the expansion

( + a(a-1)... (a-n+l )2n+)(2.12) (1+t) = 
2  { - + (P1C + )- - 1 (r) }

n-1 I (at+l)(a+2)- - -(a+n+1) nn=.1

is well known as Neumann-Stieljes series (see [121, pp. 240-244).

Remark 2. Since

(2.13) a(a+l)...(a+n) - r(cx+n+l)
r(a)

the above results can also be written in the following form:

1) if E = -1, a > -1, then

(2.14) a (_l)n r(a+l)r(n-a) (2n+l).2an r (-a)r (n+a+2)

= (_)n- rr(l+a)i 2sin %a r(n-a)(2n+l)-2
a

(-)Pr(a+n+2)

2) if -1 < C < 1, a > -1, then

(2.15) a r(l+a)(1- )a+r(n+l ) (n +1 )(a+l,-a-l)()n r(a+n+2) 2 n

3) if E > -1, then

(2.16) a - (-) n(2r) r+(A( (r 2)

r(-a)2 r(n + f)

- (_l)n-1 rCl+a)sin 7ra r(n-a) n-a 2( r 2

2ar T r(n + 1-)

Remark 3. In the special case F - 0, we have (a > -1)

4

.,I.
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1 (-1ltl[2-(a+l)2 1 [2-(+21..[ 2n-)- I2 1

(2.17) a2  (2n + 1) ( [3 (a+2) 2.] 1(2n-1) (ai) 1
2n2 (a+1 )(a+2). ... (a+2n+l)

1 F(l+2n(n+l + a)r(n -=(-1) 2(2n + "1) ( + )(- 22

) 2 + a P (2n+a+2)

2r( 2

(2.18) anl (2n + 3 (-1) [2 -(+1) 24 -(+) 21...[(2n) 2-(+t) 21
2nl (o+2) (o+3) ... (+2n+2 )

2 3P+3 a 2 P(n+l+ -)r(n - -i- (-1)2(2nr + 1 _
2 1(+a _( a+1) r(c+2n-3)

Proof. In fact, for the Jacobi polynomial P(a+l'-a-l)(t) the following

n

recursion formula (see, for example [11], p. 71) holds:

(2.19) P(a+I '--)(t) 
0

( - W + a + tP1

(a+1,-a-1) ( 2n+l tp(a+l,-a-1)(t) n2-_+l)_ 2  (+1,-_-1)__)
)n+l n+l n n(n+l) n-I

In particular,

(2.20) P(a+l'-a-1)(0 ) , 1

P (a+1,-a-)( 0 ) 1 + f
I

P (a+l,-a-1)( 0 ) n n(+l)2  P (a+1-a-1) (0)
n+l n(n+l) n-I

Equations (2.17) and (2.18) are obtained by discussing the cases for n

oA
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even and n odd reap.

Remark 4. Equations (2.17) and (2.18) can be combined into one formula:

[M-1] r(l+)n(a)( + 2 nr(-'+ 1)r(- )
(2.21) a - (-i) (n + 1 2) 2

n r(n+a+2)

with

cos if n is odd

*n(a) =
n

)sin ---, if n is even

and fx] being the largest integer which is not greater than x.

3. ESTIMATES AND ASYMPTOTIC BEHAVIOUR OF THE COEFFICIENTS OF THE LEGENDRE

EXPANSION

In this section we will obtain the asymptotic formulae and some

estimates for the Legendre expansion. First, one can easily prove the

following lemma by using Stirling's formula.

Lemma 1.

(3.1) r(nt+) (I + 0( (n +)
n

where O(-) depends on a, 8.

We now prove the following theorem which is concerned with the

asymptotic behaviour of the coefficients obtained in Section 2.

Theorem 2. Let an  be the coefficients of the Legendre expansion of

a 1
(x-), and a > -. Then

..........
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1) if = -1, then

(3.2) a = (-0) - (1 + O(-)
n 2a-c+In

with

2a+1r'(I+a) 2sin ita

2) if -1 < F < 1, then

si.ne a-A<+1/ 1 3+ + (

(3.3) a - r~a+l)(-~sin { a cosr(n + I )0-(a + )] (+)0

with 0 - arc cos &, and 0(1) holding uniformly for I1 1 - E, C > 0,

3) if & < -1, then

1
(ln-I Cl(a) 2 a + 2- 1 -

(3.4) a (-1) 1 [(I-r ) + ( )] * r n-

n

a+1

where C (a) - r(l+a)sin na and a 2 > 0
2 F , 347 2

0(-) holds uniformly with respect to r E (0,1).
n

Proof. By Lemma 1 and (2.14), (3.2) follows immediately:

for - -1

a - ( 1 C ( r(n-a) ( +
n 0 r(n+a+2) (+

(-I)n-lCo(a) 1 (1 + 0(4).
n

For -1 < < 1, we use the following asymptotic formula for Jacobi

jt -
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polynomial (see [11] p. 196).

3
(3.5) P(al')(cos 8) - cos(N4y+ o 2

n 1--

/n(sin !) 2(Cos

2 2oT

where

N * n + (a+ +1)/2

Y -(a + ) "
T2 2

0 < e < n.

This formula holds for arbitrary real a and 0 and holds uniformly for

A E [E,n-E], E > 0. Thus, in particular, setting 0 - arc cos F., we obtain

++-I 1o~t ) G)-(M +3
P - 2 2 -1 + O(n 2.)n31

/'tn(sin ) (cos 2)

/2(sin e) cos[(n + )f)e-(r + 3- O 3

inin (1-cos e) M
on

Since (1- )a+l (1-cos 0)2+1 ,  by (2.15) we get

a r(l+a)(-al)+r(n+l) (n + 1) (M+i,-a-1-)()an= r (n'a+2) Pn

. r(2+ c(l-.os i . i, + 2 cos[(n + )-(a +

n -Vn" (1-cos e)

+ o0 3T}
n

.-,....
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1~

S r(l+a)(s ) 2 cos[(n + ) a + +

This holds uniformly in 0 E [k,%-l.

For F < -1, (2.16) and Lemma 1 gives (uniformly in F)

-ia2n-a
an (-a) CIa) . n, (r

2
n

It remains to analyse n,a(r ). The series

nar2) -1 (na+ji)) ik( 2) 2k
nak-i i-I n+j + ~ k

converges uniformly in r E (0,1) since its general term is dominated by

+ 1 (k--- (
- )

1 1

as k + + - and a + being non-integer. (If a +1 is an integer, then
2 3

n, (r 2 ) only contains finitely many terms), and because a + >1 for

a > - !. Thus

li2 n,a(r 2  + k 2 r 2 2(-r2 T
nk+ k-l k

We shall estimate now the difference

a+-n n,a 
(r 2 ) )Rn =2 (r2 2 •

Since

'U1

it-
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k - r(n -3)(n-ak) a ) + 3IT[ n- -l 2 n 2 (141(- )

j-1 n+ J+ T r(n-a)r(n4-k+ Vi.

holds uniformly in k, and since this product decreases as k increases,

[Tkc~ 1 -
Rn- I ] (-+- -l- l- )k( +  r rkI < 7+

k-I j-1 n+j+ j k 1 2

where

1

1 = I[T J - I( 2) r2Ik
I k-l -I1 n+j+- k

N (n--+J-1 a +T2)

[l - J 1 1)]ksJ-1 n+j+ T- k.01 k

3

C(NI nr 2f~i) -1~ ~

1 1 n+j+

clfl-1 _ 2_.kj)

' 1= +11 < <T, ,.+J -
k-N+l kJ1n-+

N 22

and C1 , C2 are independent of n and N. Choose N - [nr+3/2 ], then as

n. we obtain

33 + 1 -(a+3/2) 1_.._
1- - ) = -l( + ---- " ) =O

n+N az+1/2 n-~n
n

LAP
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a+l /2 .

with a = +3 2 > 0. We see that and Y have then the same order O(-),
13 2

thus

R = 0()
n

which uniformly holds for r E (0,1). Therefore we can write

2 1

n,a (r2 ) = (0-r + (

n

and equation (3.4) follows.

Remark 5. In the case -- 0, using (2.21) and Lemma 1 one can easily obtain

(3.6) a = (-1) 2 r(l+a)n (a) n_ (1/2 ( ))
n it n a-1/2 2

n

where

Cos a if n is odd,

$n(a) -

(sin n if n is even.

We shall now prove the inequalities of an which are important in our

further error analysis.

Theorem 3. If € -1 and n > a (a > -

1

(3.7) lal r n - --1I+ 2-) E 2

a + u+ 1
n n

w
t with the equivalence constant depending only on a and r -

it" I+,Fi° -1
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(Here r 1 . is admissible.)

Proof. Since

n-- m 2n 1r

a n  (-1) C(a) r l- - (r 2 )(1+0( )
nfn a+1/2 n,a n

holds uniformy in r as n * -, it suffices to estimate D rn, r).

Using the integral representation (see [151, p. 259):

- (c) (1ta-lI -ai -
'F(a,b;c;z) = rFc--a) I ta) I (1-0 c-a-l (I-zt)- b dt

0

for Re c > Re a > 0, Iarg(I-z)I < n, we have for n >a

(3.8) n,ar 2 ) = F(n-a,-a - I;n + ;r

r n+3/2) t-a-l( t)a+I/2 r2t)a+1/2 dt.= r(a+3/2)r(n-a) 0
C 0

Writing (1-r2 t)a+1 /2 = [(l-t)+(l-r 2 )t] a+1/2 and noting that for 0 < a

+- 4 1, the function xa+l/2 is concave. We can use Jensen's inequality2/

(161, p. 28) for ab > 0, r > s > 0

(3.9) (ar+br)l/r < (aS+be)I / s ,

1 1
to obtain for 0 < a + Y 1, r I, s a + 1:

(3.10) 2
a - l 2 [(l-t)a+

I/2 + (l-r2 )x+1/2 ta+
1/2

M+2 a 1/2 t(l-)a+/2+ (1-r2)t a+1/2
2 

2
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2a+ 1/2 (1-t)+(1-r 2 )t a+ 1/2 2  /2

4 (l-t)1+
1/2 + (1-r2)z+I/2ta+I/2.

For a +I/2> I the function x(+I/2 is convex, using once more the Jensen's

inequality with r - a +1/2, s = 1, we get

(3.11) (l-t)' + I'2 + (1-r 2)a+'/2 ta+
I/2 < [(l-t)+(l-r

2 )t]a + 1/2

2a+ 1/2 (-t)+(I-r )t 2 a+ /2 (1-t)a+12+(-r2)+/2 
t + / 2

2 a- 1/2 (1_t)a+1/2 + (1-r 2 )a+ 1/2 ta+1/2 .

Hence we get by using (3.8) and Lemma 1

r(n+3/2) f t n l (-t)a+/2 (1-t)+/2 + (1-r2)a+ 12 ta+ 1/2 }dt
r(a+3/2)1"(n-a) 0

I(n+3/2) [(n-a)r(2a+2) + (1r 2) a + /2 P(n+1/9 )r(a+3/2)
(a+3/2)r(3-a) r(n+a+2) '(n+a+2)

22a+l r(l+a) =(n+3/2) + (1-r 2) +/2 r(n+1/7 )r(n+3/2)
r(n+a+2) r(n-a)rCn+a+2)

(D(a) 1 + (l-r2)a+l/2 )(1+O(1))
(1+ 1/2 n

where

(3.12) D(a) - 2 a+
1r(+a)

and the term O() iR uniform with respect to r, thus we have (using the
n

notation ,)

•4 I
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(3.13) n(r 2) - 2+ (1-r2 )"+ 1/2n ~ a n (+ 1 / 2

and inequality (3.7) follows easily. ((3.7) is valid for r 1 by the

equation (3.2).)

Remark 6. The estimate (3.13) is true under the condition n > a. We now

consider the case when n 4 a. In the proof of Theorem 1 we have

f sin 2(n+l-l_ d 2 n+i 2(r2

12r 9 2 )n-a (2n+1)!! n,0(l+2r cos 4rr2) -  n

For n 4 a, it follows that

(r 2  
- _(2n+i)1 f sin2(n+l)-1 E

nr 2(2n)!!f 0 (1+2r cos O+r2 na

(2n+l)!'' "2 sin 2u+1 1 I
2(2n)! f 20

On the other hand, apparently we have

ni (r2) < (2n+l)! f i 4a-n sin2(n+l)-1 00 4 4'.
n,a 2(n)!! o e

Therefore we have

(3.14) (r2 ) < 4a if n a
2 n,a

and

(3.15) n r -a if n 4 a. a
cca+ 1 /2

0II--



21

Theorem 4. If -1 < 1, then there is a constant C > 0 independent of

n and E, such that

Ce 
2 +2 o0 Xn-

1

C 0€0 +1/ k-< 9 A-n n

(3.16) Ian ( )A I 2 n -

Cn- (2 a+ I )  Xn- n -I  < n

with e - arc cos F, X > 0 fixed (C may depend on X), and

8 - min(@,t-0).

Proof. For any real a, 0 and c > 0 fixed,

S0 - a-
1 /2 0 ( n - /2 cn-I < < n/2,

(3.17) P (aO(cog 0)n

O(n), 0 < 0 cn-

(see [111, p. 169). In particular,

e-a-3/20O(n - I1/ 2 )  cn1 4 0 < n/2

(3.18) P(a+l,-a-l)(cos e) =

O(n'X+l) 0 < 0 4 en
-I

For n/2 < < it, we use it - 9 instead of u. Because cos 9 = -cos(n-9)

and

(3.19) P(a'O)(-x) - ( - l ) n P(,a)(x)n n

(see 'll], p. 59), we have

.. a
. , ' A
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P(+l'--l)(cos 0) = (_,)
n P(--la+l)(cos(7-0 ))

n n

((-9)+a+l /2 On' 2), i- cn > 0 o n/2,

(3.20)= O n -), -c - .

it) 0) > n- cn

Noticing that for 0 < 0 < n, 1 - = 1 - cos 0 = 0(0 2), (2.15) gives

a P(1+,)(1-_)a+lr(n+l) (n+i/f)p( a+l,--l)(F)an r (a+rr-2) n

0= 2a+2 -a )._ (a+l,-a-1)
0(8 n

a+ 1 /2 (n-a- 1/2 -1 < it2

e2a+2O(n), 0 < 0 4 cn-1

(n-9)a+l/2 0(n--l/2 n- cn - 1 > 0 > n/2

0(n-(2+)),i ) 0 n - cn-1

and (3.16) follows.

4. ERROR ANALYSIS OF THE BEST L2-APPROXIMATION OF (x-a)7 ON [a,b]

We know that the best L2-approximation is given by the partial sum of

Legendre expansion. Let E p (a,b],d) denote the error of the best L2 -

approximation on [a,b] of the function (x-d)+, (d < b) by polynomials

of degree p. If [a,b] - (-1,11, then we will write simply E ()

E p(Q-1,11,0.

First, we consider the interval (-1,11 and the function is

u (x) ( (x-&)+.

--- " -
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Let

(4.1) (x-r)a ~ a P x), on [-1,1]
+ n= n n

then

(4.2) E (F) = 1I 1 a P n(X)R
np+1 L2 (-,1)

= { a n+
n-p+1

In the general case of the interval [a,b] and the function Ud(X)

= (x-d)a the following relation can be easily obtained:

Lemma 2. E p([a,b],d) - hc+ 1/2E ( )

where

d-c c _ a+b b-a2'. h =- .h 2 2 2

Now we are going to obtain asymptotic formulae for the error E p(F)

and E p([a,b],d).

Theorem 5. If -1, then

2a+ 12 (lo1)

(4.3) E (-1) - CO(ca) 21+2 (1+0( (p - )
p 0 (p +lp

where

CO(a )  r(l+a) 2lin na .
1/2a+ln

Consequently,

41

44 4
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(4.4) Ep([ab], a) = CO(a) ( b- a ) +  (1+O(i))

or

( b-ala+/2

(4.5) E ([a,b],a (
P ( p1+l ) 2a+l

with the equivalence constant depending on a but not p.

Proof.

2 2 1/2

Ep(-l) = L anl }

2a+lr(l+a)2 1sin itI { 1+0(1/n)l 1/2
TE 4o,+3

n=p+l n

= 2 a+l (l+ ) 2 sin l 1 1 10 1
4-/4a+2 (p+l)2n+ (

F(l+) 2 Isin nal 2a+ I/2 1= (1+O(-)).

it/2a+i (P+) 2a+l p

b-a

Noting that h = -, (4.4) follows readily by using Lemma 2. U

Theorem 6. If F < -1, then

i r 2  1

(4.6) E (,) = C (a)(,-r2a r l (1+O0())

p 1 (p+) a

with

a , r1 C() r(l+a)Isin ial> 0, r = i , C() =

I ,]+/ , -1

41
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and the term 0(-) is uniform with respect to F < -1 - r (E > 0).
p

Consequently,

(4.7) E [a,b],d) = C1 ( ( +/2 1-r (p+ a
p 1 2

_-_-__-_-- b-a frda
with r - / for d < a.

/b-d + Va-d b+a-2d+2V(b-d)(a-d)

First we need to prove an auxiliary lemma

Lemma 3. If 0 < s < I, a > O, then

n N __
(4.8) s__ = L 1

fNfa a1-se N
n=N n °  NC - IO )

IN

The term O(@) is uniform in s E ,I-Ei, E 0

Proof. Observe that

N 1  n n i1 ns s Y I isn

N°  a -s n N ° a n °
n'Nn nN+lN(4.9) 0 N<

N K

s + S 1

(1-s) )* (1- (N-- k

S(l-s)[t- (N- =" j k s+ (l-s) y K

N+m

-[ - N-m N,m
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Choose m = nN then for N we obtain

S

m I n N + + ((nN2
Rm 1 1 (1 + 1)-o +

N N i I N
s

^Rn N)
N

In N
and this term O(- ) holds uniformly with respect to 0 < s 1 -,

E >0.

Proof of Theorem 6. Lemma 1 and Lemma 2 give

n-p+1

r(l+a)isin ial (l-r2)a+ I/2 O 2n 2 1/2

_______ r___ .1 (1 +o(_)

-7 (2r) ' +n= +l n2a+1 2n+l pa

=C (l(Ir 2 )+/2 1 r 2 ( p + I ) 1/21

2rC (a) (I__)____} (i + o(.!nP))(1 + o(l-))

I -(2r) r -r 2 (p1) ) p

c (a)(1-r2) (I + 0(
( p+l ) a+I a

a+ 111

where o a 1 E (0,1) and the term 0(-) is uniform with respect
a+3/2 p

to 0 < r 4 1 - e, c > 0. Considering the general case we obtain

d-c 2d-a-b

h b-a

1 b--a - /a--

r - f.t/ o
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(a < d), and (4.7) easily follows.

Remark 7. If d < a, the singular point is outside of the interval

[a,b], then the error Ep([a,b],d) reduces exponentially by the above

theorem, and the rate is characterized by the ratio r. This value

depends only on the ratio of the length of the interval and the distance

between the position of the singularity and the interval, but is

independent of a. In Section 5 we will see that this property also holds

for more general functions. In fact, let III = b - a, 6 = a - d =

dist. (d,ta,b]), then

d-c - (1 + 2(a-d)) = (+2X)
h b-a

6
where k = - -. Therefore,

(4.10) r = = 1

I E 1 +2X+2VX(l+k)

Thus r is geometric invariant of the error.

We are now going to obtain the estimate which is uniform with respect

to F. < -1. We need first the following lemma:

Lemma 4. Let 0 < s < 1, a > 0, N > 2.

I) If 0 < s 1 - ,then
N'

n N 1
(4.11) n a Na 1-snN n °  Na  -

2) if 1 -! s < 1, then
N
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N N
(4.12) l 8 N

n-N n+

These inequalities hold uniformly in s and N.

Proof. As in the proof of Lemma 3, we have

sN In

N° a1-s nNna
O <nsNsfl-(I-sm)(-

)°  R_,
s 1

N a 1-s

1
If 0 s s 1 -, then for any m P I

IN

Choose m N and notice that (I- L)N + -- we get
NNe

N N n

Ns

0 N 18 n-- 1 G )
s 1 20 e

N 
° 
a l-s

thus

N 1 n 1 N

Nol-s n=N nC 2C e Noa 1-8

and (4.11) follows.

In order to show (4.12), observe that

N Gos S aN I I < a 5 N1  dt

nN n+l o+1 N- l

4 1

A
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N 1
S 1 S N

- (N-1) N

2° s -

2 for N > 2.

If 1 k s 1 - then

0 n n X

s f dx

n-N n N x

= s y+N dy (y = x-N)
0 (y+N) 0+ 1

- N fm dy (yN)y

N 0 (1+y/N), N+y

N 0N

L f (1-1/N) t d, t y/N)

N 0 (l+t)

since (1 - I/N)N t 1 as N + N ( 1 for N > 2. Thus

n N 0 4-t
s fn=N o1 N-c f dt.

nN n 0 (1+t) C+ l

This proves (4.12). U

Theorem 7. Let r < -1, p + 1 > a, then

1) if 0 < r2 1 -L, then

(4.13) Ep([) I r I -
_+ (1-r 2 a

p A-r 2 (p+l) a+l (P+1)a+ 1/2

.1b
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2) If I - p-r- € I, then
rP+l -

(4.14) E () - rr+ )a 1 + (1-r )+)/~

Inequalities (4.13) and (4.14) hold uniformly in r and p, where

r -

In the case of general interval [a,b] the inequalities have to be

modified by multiplication with a factor (b-a)°+1 2

Proof. The results are the direct consequence of Theorem 3, Lemma 4, and

the simple inequality

I< v2 +,'7.

Remark 8. By Remark 6 these estimates are also valid for p+l < a.

Now we shall explore the error behavior for the case -1 < F < i. As

we see in Theorem 2 the coefficients an behave in a more complicated

manner, hence we cannot obtain a simple asymptotic formula as in the other

cases. However, we have the following estimates:

Theorem 8. For -1 < F < 1, there exist a constant C > 0, which

depends only on a such that

) -c ' a+ 1/02 e -

(4.15) E (fQ) '

{1(_.i - 2- e

C4I1~ 
,+
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where 6 - min(O,r-6), 9 - arccos .

For the error in the general interval ta,b], a < d < b, the right-

hand side has to be multiplied by (b-a)a+ l/2, and

0 - arccos 2d-a-b

Proof. By Theorem 4 we can write

nn

lanI -9
6)n+ 12

C C-) a+1/2 0~ 2
'n n

with C - C(a), 6 - min(w-6,9).

Therefore, if w - 1 6 ( it, thenP41

P n-p+l . n n+I[

--- '+  +

2pn+ 1/2

4 i 4a+3 + I 2a+2nup1 n n-2p+l n

The case when 0 4 8 < 7 - 1- follows similarly.

For the other side of the inequality we have the following result.

Theorem 9. Let c 4 6 4 1 - E, c > 0, then there is C - (a,&) > 0

such that

(4.16) E(C) ) c(-L)'+ 12 (6 min(6,%-e) )p PFl

the estimate is uniform with respect to 8 (6 - arccos .

C4I

i
r

-..-.,
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Proof. By Theorem I

(4.17)

1 1 3)(
E Q = P(l+a)(sin e)a+/2 [(n + )O-C< + ')-I

n-p+1 nl2a+2 n 2a+3

= 2 2 1 )(-C + 1)-/] 1/2
r(14a)(sin 0)x+t/2{ f 212+( )

I 2 at+2 } +O( ).n-p+l n p

The term 0(-) is uniform with respect to ( E [E,t-E].

p
It can be readily seen that (4.16) is proved if we show that

(4.18) max { cos 2  + 1 - (a + I)-I] > sin

mrn,n+l

EWe prove this by contradiction. Let y " , thus sin -

cos(.! y - ) If (4.18) is not true, then for m , n and m = n + 1 we

have

cos2 [(m + )e - (a + )-T] < cos(!!- ')

Thus there are integers k(n) and k(n+l) such that

(2n+) - (a + 2k(n)) < y,

- < (2n+3)2-- (a + 1+ 2ken+l)) < y.

Therefore

- <Y (k(n+l) -k(n)) < y.

lvr -
-
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%ecause y (ff and y < I we get

k(n+l) - k(n) > - 0 = ,

k(n+1)- k(n) < 2_+ y.

Since k(n+l) -k(n) is an integer, we have the desired contradiction. U

Remark 9. It is easy to obtain the estimate for the case r 0:

(a)
(4.19) E o(O) W ( ~):+ /

where

C(a) , r(1-c)

,y'(-2a+l )nt

In fact by (3.6) we have

n2p+l n

(si (0)) (cosa (a))

- /T'(l+a){ aD snM- 2 (Co a2 1/2

k=f y!l] (2k)2a+2  .EPl (2k+1)2a+2
2 kf2

r(+) f1

1(2 a+ -1)7t (p+l) + /2 S

At last we consider the problem of the asymptotic behavior of

E p([a,b],F,) as the size III of the interval approaches zero. For

Pt

- -,--- -- ------------------------
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simplicity let 0 - 0. We have the following theorem:

Theorem 10. Let x > 0 and let {1} be a family of intervals

containing x. Then

E (1,0) 1
(4.20) lim -P ' C(a,p)IIl_.o I11p 312  x P 1l - a

where

C~a,p) = r(l+a)Isin ral r(p+l-)S /7r 4P+l - r(p+3/2)

This limit is uniform with respect to x > c, E > 0.

Proof. Let x ) c, e > 0. We may assume that the intervals I - [a,b]

in which x lies are away from zero:

0 < a 4 x € b.

First consider the ratio r in the coefficient an of (2.16). In this

case we have

r - r(a,b) Iil
a+b+2ab

Noting la+b+2/a-b - 4x ( 3111, we have

4xr(ab) la+b+2a/ - 4x 3111III -1 4 x-3IIIa+ b+2/ab T i -3-- --F

thus

Choose III < c, then the above estimate becomes

tt
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I I 3, 3 ,

hence lim r(a b) I
IrI O -~ uniformly hold with respect to x > E, £ > .

By (2.16)

a L (l)n-i T(14c)sin na F(n-a) n-a ,(r2)
n / 2' r(n+l/2 ) .

Recall that (r 2) has a majorant series (s pn+/'-'-- < - (see proof

k a+3/2
of Theorem 2), thus lim tn, (r2 ) 1 holds uniformly in n. Thereforer+O
we have

22 Co 2(n-a) 2
2ol oa 2 r2n-c)

n-p+2 n n-p+2 F(n+l/2 ) 2n 2l

< C(a) l- r2 (p+2-a)

it follows that if x > & and III Is small, then

(I, ~2 f 2 2
n=p-2 n 2n+1

i 2a+l r2(p+2-a)
g C(a)

1- 
2

c( ,)li 2p+5"

Hence

E (1,0) 2 (Ii2r1 2 22
"° in 1112a p4-( 2'  

l 2 P + 2,0) c
iw}P+3/2 ) 2 2
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(r(l+a)sin na r(p+l-a)) 2 1 1 r 2(p+l-a) + 2

V2" r(p+3/2)3  TF TIT)1

+(1'(l~tL)sif 7ra I'(P+1-2) ) 2

/ 7 4P+1 /2p+3 F(p+3/2) xP+-

Remark 10. For the constant C(a,p) in (4.20), we have

(4.21) C(a,p) -- r(l-4a)Isin iral 1

V27r 4p+lpcz+l
as p +~

5. THE BEST L,2-APPROXIMATION OF ANALYTIC FUNCTIONS WHICH HAS AN Xa-TYPE

SINGULARITY

We now extend our results to a more general case: the class of

analytic function which has an xa-type singularity. Precisely, we will

discuss the function which is analytic as a function of complex variable

except at one point xO E R\[a,b], at which it satisfies the following

growth condition for Iz-x0I < K, K > 0:

(5.1) Iu(z) - u0 I >Klz-x la (a > - 1, noninteger).

where

{u(x0) if a < 0

U
0  =

0 if a < 0.

The case that the singular point xO is real and outside of the

interval (a,b] is most interesting. We can obtain an estimate which has

very similar character as that for the function (x-0) . We have the

following results:
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Theorem II. Let u E L2(a,b) satisfy the above condition (5.1), and let

I - [a,b], d = dist.(xoI)

h = III =b-a
2 2

Then the error of best L2-approximation by polynomials of degree p can

be estimated as follows: if E < r < 1 - E (E > 0), then

(5.2) E [a,b] < KC(a) ha+ I1/2 1-~r 2 r p+ I

P

where

r r(d) = ___________
r =

h d
1 + 17+ V (2 +d)

h h

Proof. First of all, we make the linear transformation as before:

x = c + ht, t E [-1,1]

a+b b-ac 2 h 2"

It maps [-1,11 onto [a,b]. Therefore for the function

w(t) = u(c+ht)

defined on (-1,11, the singular point will be

E Xo)-C

0 = h

and

6 dist.(r0,[-1,11)

, • 1
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h st.(x 0 ,a,b]) =

and the growth condition (5.1) becomes

(5.3) Iw(C) - u0 1 Kl(c+hc) - (c+h&0)0 a

K hall - E01

As usual, we expand w(t) int the Legendre series

w(t) I anP n(t) (t E -,]

n=o

then

a 221/2

(5.4) E [-1 1 ] a n
p ' n=p+l n

Without loss of generality, we may assume x0 < a, thus &0 < -1 and

&0 = -1 - 6.

Since w(t) is analytic except at 0 [-1,1], we have

2n+l 1
an  = 2 w(t)P n(tdt

-1

1
2n+l 1 1 w(t)[t2-1)n](n ) dt

2 n.. f
2 .n. -I

= 2n+l (_i)n 1l w(n)(t)(t2_l)n dt
2 2n.n! -1

2n+l 1 f I I d1(l-t 2 ndt
2 n27r i n+1 l (-t)d2 .n! -1 y (C-t)

41l
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where y is any contour to which t is interior and r0 is exterior,

and it is positively directed.

Now we choose y to be the circle centered at t with a radius R

R(t) < It - 01, then we have the following estimates;

1 w() dI I I w(O)-uo
2i i n+l 2ni n(d_t)nl

S w( )-uo ds21 R Rn+l a

j h 12n

f 2 f IC - 0 1 dO}

R 0

where = t + ReiO

1..

Figure 5.1.

Let F> be the intersection of the circle to the segment [To,t],

and let o F1 - 0 be the distance of r0  from the circle, then

21t

.(o) = i f Ic - d@
2t 0

- if (p2 + (2R cos if)2 + 4pR cos 20 a/2 dP.
F-E2

It" i
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1
If -- a < 0, the integral is dominated by

2

12R cos I

and if a > 0, it is continuous in p. If we set R0 - t - R +

we can let p * 0+ so that R * R0 , and obtain

M = lim+ M(P) - f 12R cos 21 de C(a)R0
P.O -it

with

C(a) = f 12 cos 91 dO.
-1E

Because

1 IT 2 a+l n/2

TE f 12 cos 2 d (sin )a dt,

using the fact that for 0 < n
21

- < sin ,
IT

we obtain

2a 2a+ l 
2 a I n a+l

- c( - ) -

< C(a) . 2a+l l 1  
-Eal

n a+l 2 a+l'

this holds for all a > -1. Therefore we have

(55) 2n+1 1 KhaC(a) (lt2)n dt
)n 2 2 n _I Rn -a



I

KC(cr)ha 2~ 2 2n

2 n+1 l ( t2++ )n- d .

In Section 2 we obtained

1- 2n n' n2ii l- dt t (2 r) n (r2

-1 (t+l+5)n -  (2n+.)!! n,a

with 5n,a defined by (2.8), and

r = 1 I
1+6 (1+6)_ I++1(+)

thus (5.5) gives

lanl KC(a)h"(2 r) n-a nr! 2

)h'((2n)
! ! )rn-a ,a (r2).

Now all estimates of 'n,a obtained in Section 3 can be applied here,

for example, we have

(r2 ) = (lr 2 )= + /2 + O(L)
n

with 0 < r < 1, a > 0, uniformly hold in r. Since we also have the

asymptotic equality

(2n)!! nn
(2n-l)!! - 2

it follows that

lanI < KC(a)h' /n r n-,(1-r2)a+ /2

At last, we obtain for E 4 r < 1 - E (€ > 0):

_ _ _ _ 
_ 

,
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2  2  2
E V111

P n-p+ n 2nl

2 1~a 2 2ct+1 2(n-a)€ [KC(a)] 2 h- (1-r22l r 2 - )

n-p+l

1 2 a 2

IKC(a)h .L r p 1 ]

and

E La,b] = ,/2h E [-I,l
P p

4KC(a )h a + 1/ 2 (1r 2 cc~

2r

Remark 11. As in the case discussed in previous sections, if x0  is an

endpoint, then

E [a,b] < C 2a+l

and if x0  is interior to [a,b], then

E p(a,b] 4 C(

Finally, the case when x0  is not real also gives an exponential rate of

convergence:

E p[a,b] < Ch + I /2 rp.

Here r is determined as follows: let p0  be the sum of semi-axes 3f

the ellipse 1) which has the foci at ± 1 and passes through the point

xo-c a+b b-a
with c hIn, then

0 h2 2'
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PO 2 o0 -I +I0+lI+'(k 0 -1 + l +  )+ -4 

and < r < 1. This result follows easily from Theorem 9.1.1, of [111,
P

0

p. 245.

6. ERROR ANALYSIS OF p-VERSION OF FEM FOR THE MODEL PROBLEM

Since the error of the finite element solution u of the model

problem is exactly the error of the best L2-approximation of u- by

piecewise polynomials (see Section 1), the results of previous sections

give the error analysis for the p version of FEM with only one

element. One only needs to notice that u'(x) - a(x-&)f - const. so

that the error estimates will be obtained by replacing a in the previous

results by a-1, and p by p-1, and taking into account the change of

length of the interval. Thus the following results follow easily from

Theorem 5, 6, 7, 8 and 9.

Theorem 12. Let E () be the error of the finite element solution of

p

the model problem (1.1) when using only one element I [0,1] itself.
1

( is the position of the singularity.) Then for a > -, one has

1) if 0 - 0, then

EC() C (a) 1 ( + 0(4)) (p, )
p 2- p

with C(c OW ar (a) 2 jsin al
wv(2a-I

2) if < 0, then

) " -l-r2 a -l rp 1E (0) = l(a)( _-- --- O-C
Pp P

r-
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where o > 0, r --- - a r(a)Isin rTl and the term 0(-L)tl--"+ V- 7 i 2a- '/2 a

is uniform with respect to & < -E, (C > 0).

And we have the estimation:

if 0 < r2  1 -1, then

p

E r 1 + 1-r2 2

Vlr
2  p P

if 1 - - r2 < 1, then
p

rp+l- 1 - + 2  - 1 2
E () -+ (-r

p a- 1/2 po- 1/2

where equivalency constants depend only on a.

3) if 0 < & < 1, then there exists a constant C > 0 depending

only on a such that

-C-

p p

where 6 - min(,V-6), e = arccos(2 -1).

On the other hand, if c < e < n-c, c > 0, then there is a

constant C - C(a,e) > 0 such that

Zp() •C(-) - 1

Consider now the p version with more than one intervals and with the

singularity of the solution located in any of the nodal points of the

Ir.1
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mesh. As p + the rate of convergence will be the same as in the
1

case 0 = , i.e., 1 If & is in the interior of any mesh

p
interval, then the rate of convergence for p + - will be the same as

when 0 < < 1 and it is half in the exponent of the case above, i.e.

l/p-1/2 . However, these rates of convergence appear only if p is

large. For samll p, the relation of the error in dependence on the

number of total degrees of freedom of the finite element space has in

general two phases. If the mesh is properly designed (in general, there

is sufficiently strong refinment around the singularity), then the rate of

error reduction will be exponential in the beginning phase. When p is

large enough, this rate becomes algebraic. If the refinement of the mesh

is not strong enough (for example, the uniform mesh), then the exponential

part of the error reduction cannot even appear. If & lies outside of

the interval then (also for one element mesh) only the exponential phase

appears. Typically, when E lies inside the interval the graph of the

error in dependence on N in double logarithmic scale is S-shaped

(actually reflected S). The first part is the exponential phase and the

second the algebraic one (see Fig. 7.2). In practice we would like to

achieve desired accuracy in the exponential phase. Using Section 5 the

results can be extended to the general case of a function with a

singularity of type xa.

7. NUMERICAL RESULTS

In the previous section we have shown various estimates characterizing

the error behavior of the p-version of FEM. Here we will numerically

analyze the accuracy of the estimates, the range of asymptotic validity,

etc. The error in this chapter is measured in the energy norm. As said

4

d
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in Section 6, the estimates are obtained from the estimates of the error

in L2-norm by replacing a by a-1 and p by p-1.

In the tables, p is the polynomial degree of the approximation, and

the error of the finite element solution (when only one element is used)

is denoted by Ep = E (a, ). Let EA _ EA(aE) be the error given by
p p p p

certain asymptotic formulae, EB _ E B(a, ) be given by some some
p p

estimates. We will compute the ratios

A E E
RA  = - RB = E

p EA' E
p p

These ratios will be called numerical constants which reflect the quality

of the estimates, the range of the asymptotic validity, etc.

In the case 0 0, the asymptotic formula is (cf. Theorem 12)

(7 .1) EA CO(a)

p 2a-1P

where

C O(c) - ar(a) 2sin ral

and we have

A
limR = 1.

P+0

The numerical results are shown by Table 7.1 for a 0.7 and a -

3.5. We can see that for a small a (the singulairty is strong) formula

____ F
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TABLE 7.1

E 0.

a 0. 7  a 3.5
p

E RA E RA
Ep p p p

1 4.743 E-1 0.9877 1.021 0.2032
2 3.627 E-1 0.9967 3.402 E-1 4.335
3 3.090 E-1 0.9985 3.093 E-2 4.488
4 2.756 E-1 0.9992 2.379 E-3 1.940
5 2.522 E-1 0.9995 4.760 E-4 1.480
6 2.344 E-1 0.9996 1.400 E-4 1.300
7 2.204 E-1 0.9997 5.154 E-5 1.208
8 2.090 E-1 0.9998 2.210 E-5 1.153
9 1.994 E-1 0.9998 1.057 E-5 1.118

10 1.912 E-1 0.9999 5.495 E-6 1.094
11 1.840 E-1 0.9999 3.053 E-6 1.077
12 1.777 E-1 0.9999 1.790 E-6 1.064
13 1.722 E-1 1.000 8.999 E-7 1.054
14 1.671 E-1 1.000 6.978 E-7 1.046
15 1.626 E-1 1.000 4.585 E-7 1.040

(7.1) gives very good results even for small p. Thus in this case the

asymptotic range is quite large. For a large (the singularity is weak

or the function is "smoother"), the asymptotic range shift to large p,

but for small p the accuracy of the asymptotic formula is still quite

good. It is also seen that there is a big gain of the error reduction

when p increases from 1 to 2, 3, especially for large a.

In the case & < 0, the error reduces exponentially. By Theorem 12

we have the following asymptotic formula:

A 1-Ir
2 a-1

(7.2) EA 1 2 a- ap

p

where

Cl(a) . ara)tsin wal
V7 2a- l/2

/;.
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and

r
V1-F +

here

lim RA 1.
P

In this case we also have the estimates

C2 (a) rp+1 a [D(a) + (1-r2 a 1/2

-22 a

r p a- 1/2

if 0< r2 4 1--
p

(7.3) E B
p

C2(a) r P 1  r D + (l-r 2
) a - 1/2

p a- 1/2 pa- 1/2

if 1 - L r 2 41
P

with

C2 (a) = 1 (a)/2"-I

D(2) 22 a 1 (a)
/;

Here, D(a) is the number obtained in proving Theorem 3. (See (3.12).

C2 (a) is chosen so that as p ®, the first formula asymptotically

B
agrees with (7.2), therefore we also have lim R . 1. It is shown in

P+10 p

Table 7.2(a)-7.2(c) that the atymptotic behavior is not too simple (it

will be described later). Note the two parts of the formula EB  coincide
p

-I.- - -. -- --- ---- - -
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2
at r = 1 - p. For r 1 1 (i.e. = 0), the formulae (7.2) and (7.3)

PA

differ. In fact, if we write (7.2) by E (0), then
p

EB(0)-P - V 4a-2.
EAo
E A(0)

p

The ratio RB  in this case is bounded above and below by constants which
p

depends on a.

It can be seen in Table 7.2 that the asymptotic range of (7.2) depends

on a and C. When a increases or & gets close to the approximation

interval [0,1], the asymptotics are shifter toward large p. If a is

large and C is close to -1, EA  is large, while EB  gives good
p P

estimation in the sense that for large range of both a and the ratio

RB  is quite stable.
p

TABLE 7.2(a)

= -0.0005 (r = 0.9563)

a-0.7 a- 3.5

E RA RB E RA RB
p p p p p p

1 4.192 E-1 0.4780 0.6334 1.022 i 3078. 0.0549

2 2.945 E-1 0.5705 0.5806 3.404 E-1 12130. 1.224

3 2.323 E-1 0.6251 0.5440 3.091 E-2 4761. 1.324

4 1.928 E-1 0.6636 0.5162 2.373 E-3 1047. 0.5972
5 1.647 E-1 0.6929 0.4939 4.738 E-4 476.9 0.4753

6 1.433 E-1 0.7165 0.4752 1.390 E-4 276.9 0.4352
7 1.268 E-1 0.7359 0.4593 5.106 E-5 182.4 0.4212

8 1.126 E-1 0.7524 0.4453 2.180 E-5 130.0 0.4187

9 1.010 E-1 0.7666 0.4329 1.038 E-5 97.80 0.4224

10 9.116 E-2 0 0.7791 0.4218 5.373 E-6 76.56 0.4297

4|
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TABLE 7.2(b)

= -0.05 (r = 0.6417)

a = 0.7 a = 3.5
P

E RA RB E I RA RB
p p p p p p

1 2.190 E-1 0.7478 0.4700 1.153 15.40 0.0340
2 9.671 E-2 0.8362 0.4321 3.580 E-1 84.33 1.129
3 5.063 E-2 0.8765 0.4706 2.912 E-2 44.18 1.934
4 2.640 E-2 0.9003 0.4962 1.937 E-3 12.53 1.227
5 1.475 E-2 0.9162 0.5150 3.254 E-4 7.165 1.253
6 8.434 E-3 0.9276 0.5298 7.844 E-5 1 5.097 1.366
7 4.904 E-3 0.9362 0.5417 2.322 E-5 4.031 1. 482
8 2.886 E-3 0.9429 0.5518 7.853 E-6 3.390 1.576
9 1.716 E-3 0.9484 0.5604 2.920 E-6 2.966 1.640

10 1.027 E-3 0.9528 0.5678 1.165 E-6 1 2.666 1.677

TABLE 7 .2(c)

-1 (r - 0.1716)

a 0.7 a-3.5

E RA RB E RA RB
p p p p P p

1 3.729 E-2 0.8224 0.4233 4.716 2.491 0.0191
2 4.302 E-3 0.8982 0.4865 5.981 E-1 20.83 1.197
3 5.744 E-4 0.9284 0.5215 1.696 E-2 14.23 2.428

4 8.196 E-5 0.9447 0.5440 3.619 E-4 4.842 1.587

5 1.216 E-5 0.9550 0.5602 1.855 E-5 3.160 1.542
6 1.851 E-6 0.9620 0.5728 1.323 E-6 2.486 1.546
7 2.865 E-7 0.9671 0.5831 1.130 E-7 2.127 1.539
8 4.495 E-8 0.9710 0.5916 1.085 E-8 1.896 1.509
9 7.124 E-9 0.9738 0.5987 1.135 E-9 1.746 1.480

10 1.124 E-9 0.9639 0.5974 1.264 E-10 1.638 1.448

i " " " * i
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For the case 0 < < ( 1, we use the estimate:

I',- C c- 1/2V7- -- 0 < e < Tr --

p p

B
(7.4) E f

P

1 e
p 2a-I1 p

where 6 = arc cos F. In this case we cannot have an accurate asymptotic

formula as for 0 0. The numerical constant RB , E /E B no longer
p p P

shows a monotonic behaviour. Tables 7,3(a)(b) are made for ai - .7 and

3.5 and E ranging from 0.0005 to .75. The numerical results show

that the ratio RB  is stable (it is bounded above and below by constants
p

which depend on a). For small a, the range of RB  is quite small
p

(this means that EB  gives very good estimation). When a is large,
p

this estimate is not so good but we still have the right rate of

convergence. An interesting fact is that the error EB  for fixed p is
P

nearly symmetric in (about = 1/2 ), yet the function (x-&)a is

not symmetric. We also see that the error (for fixed p) has the maximum

at F 1/2 (the middle of the interval). It tends to be smaller when

moves to the endpoint of the interval.

The graph of the error function E p (a,&) for a - 1.5 is shown in
p

Figure 7.1. It is very clear that if the singularity is located outside

of the interval of approximation, then the rate of convergence is

remarkably increased. This fact is important in designing a right mesh

for the FEM. It will be shown in the second part of the paper that a

strong refinement around the singularity will greatly reduce the error for

the same number of degrees of freedom.

1 r .. -
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TABLE 7 .3(a)

a =0.7.

= 0.05 = 0.005 = 0.0005

B B BE R E R E RB
p p p P P

1 5.191 E-1 0.8518 4.791 E-1 0.7862 4.748 E-1 0.7792

2 4.804 E-1 1.040 3.779 E-1 0.8184 3.643 E-1 0.7888
3 4.802 E-1 1.159 3.373 E-1 0.8589 3.120 E-1 0.7946
4 4.726 E-1 1.208 3.182 E-1 0.9091 2.804 E-1 0.8011
5 4.517 E-1 1.208 3.091 E-1 0.9658 2.589 E-1 0.8089
6 4.239 E-1 1.175 3.053 E-1 1.026 2.435 E-1 0.8182
7 3.987 E-1 1.114 3.040 E-1 1.087 2.319 E-1 0.8288

8 3.835 E-1 1.126 3.038 E-1 1.118 2.230 E-1 0.8407
9 3.786 E-1 1.138 3.038 E-l 1.168 2.161 E-1 0.8539

10 3.784 E-1 1.162 3.034 E-1 1.168 2.106 E- 0.8681

0.25 F = 0.5 = 0.75

F RB E E RB
p p p p p p

1 6.508 E-1 1.099 7.410 E-1 1.216 7.483 E-1I 1.264
2 6.289 E-1 1.220 5.973 E-1 1.126 5.877 E-1I 1.140
3 5.399 E-1 1.136 5.773 E-1 1.180 5.372 E-1 1.130
4 5.130 E-1 1.143 5.271 E-1 1.141 5.341 E-1 1.190

5 5.082 E-1I 1.184 5.174 E-1 1.171 4.929 E-1 1.149
6 4.742 E-1 1.146 4.884 E-1 1.147 4.735 E-1 1.144

7 4.613 E-1 1.150 4.821 E-1 1.168 4.721 E-1 1.177
8 4.588 E-1 1.175 4.622 E-1 1.149 4.499 E-1 1.152

4.386 E-1 1.150 4.571 E-1 1.166 4.384 E-1 1.149

10 4.305 E-1 1.152 4.426 E-1 1.151 4.375 E-1 1.171

___ __
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TABLE 7.3(b)

a - 3.5

= 0.05 F = 0.005 = 0.0005P

BE RB E RBEp p p p p p

1 8.960 E-1 2.048 1.008 2.304 1.019 2.330
2 3.211 E-1 46.97 3.384 E-1 49.50 3.400 E-1 49.74
3 3.334 E-2 24.84 3.114 E-2 51.88 3.095 E-2 51.57
4 3.159 E-3 5.580 2.436 E-3 22.81 2.424 E-3 22.33
5 8.295 E-4 2.862 4.983 E-4 17.80 4.778 E-4 17.07
6 3.238 E-4 1.930 1.508 E-4 16.08 1.410 E-4 15.03
7 1.501 E-4 1.421 5.749 E-5 15.46 5.211 E-5 14.01
8 7.319 E-5 1.034 2.566 E-5 10.70 2.241 E-5 13.43
9 3.567 E-5 0.7170 1.287 E-5 7.640 1.076 E-5 13.07

10 1.984 E-5 0.5474 7.070 E-6 5.758 5.622 E-6 12.85

r = 0.25 F = 0.5 F = 0.75

E RB E RB Ep RB
p p p p p p

1 4.795 E-1 1.687 1.552 E-1 0.3548 2.091 E-2 0.0736
2 2.279 E-1 6.414 9.953 E-2 1.820 1.711 E-2 0.4817
3 4.760 E-2 4.525 4.289 E-2 2.647 1.202 E-2 1.142
4 5.351 E-3 1.205 8.816 E-3 1.290 6.987 E-3 1.574
5 1.593 E-3 0.7009 3.630 E-3 1.037 3.097 E-3 1.362
6 1.513 E-3 1.150 1.897 E-3 0.9364 9.555 E-4 0.7263
7 8.019 E-4 0.9679 1.128 E-3 0.8843 6.864 E-4 0.8283
8 3.633 E-4 0.6546 7.293 E-4 0.8534 5.736 E-4 1.033
9 3.599 E-4 0.9233 5.001 E-4 0.8334 2.932 E-4 0.7521

10 2.551 E-4 0.8975 3.901 E-4 0.8196 2.127 E-4 0.7485

/v
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Figure 7.1. p-version with one element (a - 1.5).

So far we discussed the p-version with one element only (m - U).

Let us now address briefly the case when the number of elements m > 2.

We assume that the solution is u(x) - xa -x (i.e., the case r = 0).

Figures 7 .2(a) and 7.2(b) show the cases when a - 0.7 and a 1 .1,

respectively. In the figures, m - 2 10, and the meshes are made by

geometric progression with a ratio q - 0.15. The dotted curve is the

error for the nearly optimal mesh-degree combination (cf. Part 2). Tn

Figure 7.3 we compare the cases in p-version for uniform mesh and

geometric mesh (a = 0.7).

4
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Figure 7.3 (a - 0.7).

a: uniform mesh (m - 50);
b: uniform mesh (m - 100)

c: geometric mesh (m = 20, q = 0.15).

It is clearly seen that the p-version has often two phases. The

first phase (when p is small) has approximately an exponential rate.

The second phase (when p is large) tends to be algebraic. This figure

will be called an S-curve (actually, It is a reflected S). For the

geometric meshes, whan having the same number of elements, if q is

small, the range of exponential phase is enlarged. However, it does not

mean that the smaller q is the better the result, since the curve is

also shifted up. Roughly speaking, when a is small or the required

accuracy is high, it is better to use smaller q. When a is large or

required accuracy is low, large q is preferable. But the difference

fI
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for q - 0.1 - 0.3 is not too large if the required accuracy is not too

high (say 1% - 5%).

Secondly, for a small (solution is highly unsmooth) one needs more

intervals than in the case of a large (solution smooth). For example,

when a =0.7, using m - 2 or m - 5 one even cannot obtain the

accuraacy of 5% in practice since the polynomial degree cannot go too high

(say, p - 10). Figures 7 .2(a), (b) show all these curves lie above the

curve for the optimal h-p extension (see also Part 2). Likely there is

an envelope for these p-version curves, and this envelope lies above the

optimal h-p extension curve.

It is very clear that the mesh-design is crucial to achieve a good

rate of convergence. If the singularity is present, then the uniform mesh

with few elements is not acceptable. Figure 7.3 shows that the uniform

mesh performs badly. There is no "exponential" phase at all and for Ci

0.7 it cannot get even 5% accuracy for hundreds of times many degrees of

freedom comparing with the case when a geometric mesh (q - 0.15, m

20) was used.

In practice (see [2]) one would like to achieve the required accuracy

at the end of the "exponential" phase. It is more advantageous to

overrefine mesh than to underrefine it. Since the p-version is using

hierarchical elements [21, as long as a mesh is given the increase of N

is not too expensive, while for unsmooth solutions a strongly refined mesh

is very important L get the desired accuracy.

It~ --
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